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ABSTRACT

The synthesis of O1-b-D-galactopyranosylchloramphenicol and O1-b-D-

galactopyranosylmandelonitrile as prodrugs potentially substrates of b-

galactosidase, are reported. Preparation of O1-(2,3,4,6-tetra-O-acetyl-b-D-

galactopyranosyl) chloramphenicol from unprotected chloramphenicol was

successful using b-D-galactopyranose pentaacetate and boron trifluoride di-

ethyl etherate in acetonitrile. However, the b-galactosylated diastereoisomers

of racemic mandelonitrile had to be made via O1-(2,3,4,6-tetra-O-acetyl-b-D-

galactopyranosyl)mandelamide in dichloromethane prior to dehydration to

obtain the nitrile moiety. Indeed, galactosylation trials starting directly from

mandelonitrile in acetonitrile led to the O1-(2,3,4,6-tetra-O-acetyl-a-D-galac-

topyranosyl)mandelonitrile diastereoisomers. From a methodological point of

view, this work extends the use of the galactosylation method to new hy-

droxyl bearing compounds. It also points out that the solvent used

(acetonitrile or dichloromethane) and the purity of boron trifluoride diethyl

etherate can be crucial factors in the use of this method as an eventual
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alternative to heavy metal-based Lewis acids usually employed in glyco-

sylation reactions.

Key Words: Glycosylation; Galactosepentacetate; Prodrug; Mandelonitrile;

Chloramphenicol

INTRODUCTION

The antibiotic chloramphenicol and the cyanide-generating mandelonitrile are

both compounds displaying biological activity that can be (temporarily) blocked by a

chemical transformation. Indeed, choramphenicol palmitate (1) has been developed[1]

as an inert prodrug which is selectively hydrolysed by lipases thus releasing the

antibacterial drug. Naturally occurring glycosylated derivatives of mandelonitrile, such

as the gentobioside derivative amygdalin (2), are selectively hydrolysed by b-glu-

cosidase, thus leading to the release of toxic cyanide.[2 – 4] Our current interest in drug

targeting led us to elaborate prodrugs which would be specifically released by the

action of b-galactosidase. Many successful examples of such prodrugs[5 – 9] have been

reported for their potential application in selective chemotherapy, such as ADEPT[10,11]

or GDEPT[12] (Antibody or Gene Directed Enzyme Prodrug Therapy). Thus,

chloramphenicol or mandelonitrile b-galactosides 3 and 4 seemed good candidates

for inactivation via galactosylation, since compounds 1 and 2 have proved to be pro-

drugs specifically activated by lipases or b-glucosidase, respectively (Figure 1).

RESULTS AND DISCUSSION

The synthesis of prodrug 3 was achieved via the selective galactosylation of

chloramphenicol 5, using b-galactopyranose pentaacetate in the presence of boron

trifluoride diethyl etherate in dry acetonitrile, to form the b-anomer 6 in 56% yield.

The a-galactopyranose pentaacetate which is unreactive[13,14] toward these glycosyla-

tion conditions was also isolated. The regioselectivity of this galactosylation reaction

was ascertained by NMR spectroscopy notably from the chloramphenicol methylene 1H

signals shift from 3.40 and 3.61 ppm to 3.54 and 4.01 ppm, respectively. Removal of
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the acetyl groups was then achieved using methanolic ammonia to give the galactoside

3 (Scheme 1).

Synthesis of compound 4 was far less straightforward. The reported preparation

of mandelonitrile b-glucoside or b-glucuronide requires glycosylation of mandelamide

7 using tetraacetylglycopyranoside bromide and a mercuric salt.[15] In order to avoid

the use of mercury, we focused on the galactosylation of mandelamide (7) using b-

galactopyranose pentaacetate and boron trifluoride diethyl etherate complex.

Our first unsuccessful attempts led us to try the known b-galactosylation of

benzyl alcohol. At first, using boron trifluoride diethyl etherate complex in dichlo-

romethane, we were unable to reproduce the 72% yield previously reported.[16] As

judged by TLC, the only observed result was an extensive decomposition. However, the

b-galactosylated benzyl ether was prepared by simply changing the reaction solvent

from dichloromethane to acetonitrile. Eventually, we found out that the purity of the

boron trifluoride etherate was essential for this reaction. It was only by boiling boron

trifluoride diethyl etherate and a small amount of diethyl ether over calcium hydride

overnight, prior to its distillation, that we were able to obtain a Lewis acid pure enough

for the reaction to proceed in dichloromethane (distilled over calcium hydride). On the

other hand, if acetonitrile was used as solvent, the use of a boron trifluoride diethyl

etherate of any reasonable purity or age led to an acceptable yield (55%) of b-

galactosylated benzyl alcohol.

Dichloromethane is the solvent commonly used in this very simple galactosyla-

tion method which was first reported to give, from trichloroethyl alcohol, either the b-

anomer[17] or, with a longer reaction time, the a-anomer primarily.[18] A later study,[13]

with b-glucopyranose pentaacetate, illustrates some fascinating kinetic features of this

method which seem highly dependent on the nature of the alcohol studied. Good b-

glycosylation results have been obtained with different kinds of alcohols such as serine

or threonine derivatives,[19–23] and even hydroxyproline.[24] Many other b-functiona-

lised aliphatic alcohols can react[25–31] as well as benzyl,[16] allyl,[32–34] propargyl[35,36]

or some other lipophilic alcohols.[37–39] The use of acetonitrile as solvent has been

reported.[40] In some instances it was beneficial to the reaction outcome,[19] in another

instance it was not beneficial.[22] Operating procedures usually favour the use of an excess

or of an equivalent of boron trifluoride diethyl etherate. However, a remarkable 2-

NO2

HO
NH

HO
O

AcO

AcO
OAc

OAc
5

6 3

NO2

HO
NH

O

i ii

O

Cl

Cl
O

Cl

Cl
O

HO

HO
OH

OH

NO2

HO
NH

O O

Cl

Cl

Scheme 1. i: b-D-Galactopyranose pentaacetate, BF3�OEt2, MeCN. ii: NH3/MeOH.
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deacetylation effect was reported[41] when an excess of allyl alcohol was present. In that

case, the reaction led to the allyl 3,4,6-tri-O-acetyl-b-D-galactopyranoside in 62% yield.

In our cases, the reaction was carried out with an excess of the boron trifluoride

diethyl etherate complex and we cannot over-emphasize the need for thorough

purification of the Lewis acid, if dichloromethane is used. Acetonitrile and boron

trifluoride may form a complex which allows the galactosylation reaction to proceed.

However, at least one example of a chemical reaction dependent on the impurities

content of the boron trifluoride diethyl etherate complex used has been reported.[42]

Thus such impurities, which seem in our case to be detrimental to the galactosylation

reaction in dichloromethane, are actually ‘‘neutralized’’ in acetonitrile.

In this context, we proceeded to try the galactosylation of mandelamide[43] 7. In

acetonitrile, using commercial boron trifluoride diethyl etherate, the reaction (i on

Scheme 2) led to a complex mixture. From the 1H NMR analysis of the partially

purified material, the presence of the four possible diastereoisomers 8a, 8b, 9a and 9b
was deduced, with predominance of the a-galactosides 8a and 8b. On the other hand,

the galactosylation reaction (ii on Scheme 2) led mainly to the two b-diastereoisomers

9a and 9b in dichloromethane only if properly purified boron trifluoride diethyl

etherate (as described above) was used. Diastereoisomer 9a could be isolated via

chromatography followed by recrystallization from 2-propanol in 33% yield whereas,

despite repeated purification attempts, the oily diastereoisomer 9b remained conta-

minated by small amounts of a-diastereoisomers 8a and 8b.

Each 1H NMR spectra of the two b-anomers 9a and 9b displays a characteristic

anomeric proton as doublets at 4.28 ppm or 4.62 ppm, with coupling constants of 7.9

Hz or 7.8 Hz, respectively. Traces of the a-anomers were also detectable in the reaction

mixture mainly by their acetyl signals. The S-enriched mandelamide was prepared from
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Scheme 2. i: b-D-Galactopyranose pentaacetate, BF3�OEt2, MeCN. ii: b-D-Galactopyranose

pentaacetate, pure BF3�OEt2, CH2Cl2. iii: (CF3CO)2O, pyridine, CH2Cl2.
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optically pure (S)-( + )-mandelic acid using a classical procedure[43] followed by re-

crystallization from toluene (ee[44] = 69%). Starting from this mandelamide, a large

excess of compound 9b was observed in the 1H NMR spectra of the unchromato-

graphed reaction mixture. This allowed us to assign the absolute configuration for all

the b-configured derivatives, i.e. for 9a and 9b and, as described below, for compounds

10a and 10b.

A dehydration reaction[15] using pyridine and trifluoroacetic anhydride (iii on

Scheme 2) was conducted on amide 9a and on the fraction containing mostly 9b. This

enabled us to obtain the pure b-anomers 10a and, from the fraction containing 9b, the

other b-diasteroisomer 10b along with a small amount of the a-anomer 12b.

Attempts to galactosylate mandelonitrile (11) with b-D-galactopyranose penta-

acetate in acetonitrile (i on Scheme 2) led almost exclusively to the two a-di-

astereoisomers 12a and 12b. Diastereoisomer 12a was isolated in 26% yield by re-

crystallization whereas the oily 12b could only be partially purified by chromatography

and still contained a small amount of 10a and 10b. Starting from (R)-( + )-enriched

mandelonitrile (Aldrich, ee (in our hands) = 44%) the reaction led to a 2:3 mixture of

compound 12a:12b (as measured by their respective 1H NMR signals integration ratio),

thus allowing assignment of absolute configurations of compounds 12a and 12b.

Direct galactosylation of mandelonitrile in dichloromethane was unsuccesful,

possibly because of nitrile chelation by boron trifluoride rendering its hydroxyl function

unreactive. This seems reasonable as a similar lack of glycosylation was reported in

trials using acetobromoglucose, mandelonitrile and mercuric salts.[15]

Deacetylation was conducted on b-anomer 10a. Surprisingly, the use of meth-

anolic ammonia led to partial amminolysis of the nitrile moiety along with racemization

of the cyanohydrin asymmetric centre. The use of sodium methoxide in methanol was

more efficient, but also led to the racemized target compound 4 as a hygroscopic syrup.

CONCLUSION

This work illustrates some additional results on the known use of boron

trifluoride etherate as an alternative to heavy metal-based Lewis acids employed in

glycosylation reactions. Preparation of the b-galactosyl-containing prodrug 3 via direct

galactosylation of the primary hydroxyl function of chloramphenicol turned out to be

very easy. On the other hand, our studies toward the preparation of compound 4 led to

quite a lot more work. Indeed the galactosylation of mandelonitrile trials in dichloro-

methane and acetonitrile illustrates the subtlety of this reaction. In this work we

observed the importance of employing an appropriate solvent (dichloromethane versus

acetonitrile) and a pure catalyst (boron trifluoride), factors that one should be aware of

in the course of trials carried out with this method. The potential use of prodrugs 3 and

4 in biology will be reported elsewhere.

EXPERIMENTAL

General methods. 1H and 13C NMR spectra were recorded on a Bruker AC-

200 or Varian multi-400 or 500 spectrometers. Shifts are given in ppm with respect to
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the TMS signal and coupling constants (J) are given in Hertz. Signals assignment was

often confirmed by two dimensional NMR experiments (COSY, NOESY, HMQC,

HMBCR). Low and high resolution mass spectra were obtained by Mrs Nicole Morin

(ENS, 24 rue Lhomond F-75231 Paris) on a MS 700 Jeol and ammonia-based chemical

ionization was used. Column chromatography was performed on Merck silica gel 60

(0.035–0.070 mm). Solvents were usually dried using activated 3 Å or 4 Å molecular

sieves. Activation of the molecular sieves was done by using a plastic-free domestic

microwave oven (irradiation in a quartz beaker of 100–200 g of new molecular sieves

until partial melting, i.e. from 1 to 8 min by periods of 1 min alternated with cooling).

CAUTION: due to residual traces of solvents, microwave irradiation of molecular

sieves previously used can result in a serious explosion.

O1-(2,3,4,6-Tetra-O-acetyl-bb-D-galactopyranosyl)chloramphenicol (6). b-D-

galactopyranose pentaacetate (2.5 g, 6.4 mmol) and chloramphenicol (12.4 g, 38.3

mmol) were dissolved in dry acetonitrile (300 mL). Boron trifluoride diethyl etherate

(8 mL, 63.1 mmol) was added, and the solution was stirred under an inert atmosphere

for 15 min. The solution was poured into water (500 mL), the organic materials were

extracted with dichloromethane and the organic phase was dried over magnesium

sulfate and concentrated to dryness. The residue was chromatographed over silica

eluting with a mixture of heptane-ethyl acetate 4:5 yielding compound 6 as a hard

foam (2.34 g, 56%). mp 85–89�C (dec.). 1H NMR ((CD3)2SO, 400 MHz): 1.96, 2.04,

2.05, 2.16 (4s, 12 H, CH3); 3.54 (dd, 1 H, J = 7.3 and 10, CH-1); 4.01 (dd, 1 H, J = 6

and 10, CH-1); 4.1 (m, 2 H, GalH-6); 4.11 (m, 1 H, CH-2); 4.25 (t, 1 H, J = 6.5,

GalH-5); 4.82 (d, 1 H, J = 8.0, GalH-1); 4.92-5.05 (m, 2 H, GalH-2 and CH-3); 5.19

(dd, 1 H, J = 3.2 and 10.4, GalH-3); 5.31 (d, 1 H, J = 3.6, GalH-4); 6.21 (d, 1 H,

J = 4.5 OH-3); 6.44 (s, 1 H, CHCl2); 7.61 (d, 2 H, J = 5.8, CHAr-2); 8.22 (d, 2 H,

J = 5.8, CHAr-3); 8.54 (d, 1 H, J = 8.8, NH). 13C NMR ((CD3)2SO, 100 MHz): 20.0

(CH3); 54.6 (CH-2); 61.3 (GalC-6); 66.4 (CHCl2); 67.4 (GalC-4); 67.7 (CH2-1); 68.6

(GalC-2); 69.5 (CH-3); 70.0 (GalC-5); 70.2 (GalC-3); 100 (GalC-1); 123.0 (Ar-2);

127.4 (Ar-3); 146.6 (Ar-4); 150.4 (Ar-1); 163.4 (CONH); 169.2, 169.5, 169.9 (COCH3).

m/z (MH + NH3) = 670. HRMS: Calcd for C25H34N3O14
35Cl2: [M + + NH4], 670.1417.

Found: m/z, 670.1422.

O1-bb-D-Galactopyranosylchloramphenicol (3). Compound 6 was treated with

methanol saturated with ammonia (50 mL) in a sealed flask for 48 h at room tem-

perature. The solution was concentrated to dryness to give compound 3 as a syrup. 1H

NMR ((CD3)2SO, 400 MHz): 3.37 (m, 1 H, CH-S3); 3.40 (m, 1 H, GalH-2); 3.44 (m,

1 H, GalH-5); 3.45 (m, 1 H, CH-1); 3.56 (m, 2 H, GalH-6); 3.70 (s (br), 1 H, GalH-4);

3.93 (t (br), 1 H, J = 9.0, CH-1); 4.13 (s(br), 1 H, CH-2); 4.22 (d, 1 H, J = 7.2, GalH-1);

5.22 (s, 1 H, CH-3); 6.51 (s, 1 H, CHCl2); 6.21, 7.33 (2s (br), 2 H, 2 OH); 7.69 (d, 2 H,

J = 8.7, CHAr-2); 8.19 (d, 2 H, J = 8.7, CHAr-3); 8.50 (m, 1 H, NH). 13C NMR

((CD3)2SO, 100 MHz): 51.5 (CH-2); 57.5 (GalC-6); 63.6 (CHCl2); 64.2 (CH2-1); 65.3

(GalC-4); 66.1 (CH-3); 67.5 (GalC-5); 70.5 (GalC-3); 72.5 (GalC-2); 100.9 (GalC-1);

120.0 (Ar-2); 124 (Ar-3); 143.7 (Ar-4); 148.2 (Ar-1); 160.6 (CONH). m/z (MH +

NH3) = 502. HRMS: Calcd for C17H26N3O10
35Cl2: [M + + NH4], 502.0995. Found: m/z,

502.1007.
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Preparation of compounds 9a and 9b. Mandelamide (6 g, 35.2 mmol) and b-D-

galactopyranose pentaacetate (5.2 g, 13.3 mmol) were dispersed in dry dichloromethane

(150 mL, distilled over calcium hydride) and the suspension was cooled to 0�C under an

inert atmosphere. Very pure boron trifluoride diethyl etherate (11.8 mL, 93.1 mmol,

refluxed with a small amount of ether over calcium hydride for 24 h prior to a dis-

tillation) was added and the solution was stirred overnight, allowing the temperature to

rise back to 25�C. The solution was then poured into water and extracted with di-

chloromethane. The organic layer was cautiously washed with water, saturated sodium

hydrogenocarbonate, water, then dried over magnesium sulfate and concentrated to dry-

ness. The residue was chromatographed over silica gel eluting with a mixture of heptane-

ethyl acetate with proportions gradually varying from 1:2 to 1:4. The fractions containing

compounds 9a and 9b were recrystallized from 2-propanol yielding 9a (2.17 g, 33%).

The filtrate was concentrated to dryness and chromatographed over silica gel (eluting

with heptane-ethyl acetate 1:4) to yield 9b as a syrup (1.1 g, still containing small

amounts of a-diastereoisomers).

O1-(2,3,4,6-Tetra-O-acetyl-bb-D-galactopyranosyl)-(R)-mandelamide (9a). mp

158�C. 1H NMR (CDCl3, 400 MHz): 1.95, 2.00, 2.05, 2.15 (4s, 12 H, CH3); 3.77 (t, 1

H, J = 7.0, CH-5); 4.14 (m, 2 H, GalH-6); 4.28 (d, J = 7.9, GalH-1); 4.91 (dd, 1 H,

J = 3.4 and 10.5, GalH-3); 5.15 (s, 1 H, HCCONH2); 5.25 (dd, 1 H, J = 7.8 and 10.5,

GalH-2); 5.33 (m, 1 H, GalH-4); 5.53 and 6.81 (dependent on sample’s concentration)

(2s (br), 2 H, NH2); 7.28–7.38 (m, 5 H, Ar). 13C NMR (CDCl3, 100 MHz): 20.5, 20.6,

20.8 (CH3); 61.2 (GalC-6); 66.9, 69.0, 70.2, 71.0 (GalC-3, GalC-2, GalC-4, GalC-5);

79.3 (CHCONH2); 97.9 (GalC-1); 127.7 (CH-Ar); 128.8 (CH-Ar); 129.2 (CH-Ar);

135.1 (C-Ar); 170.0, 172.1 (CO and CONH2).

Anal. Calcd for C22H27NO11 (481.46): C, 54.88; H, 5.65; N, 2.91; O, 36.55.

Found: C, 54.75; H, 5.63; N, 2.84; O, 36.56.

O1-(2,3,4,6-Tetra-O-acetyl-bb-D-galactopyranosyl)-(S)-mandelamide (9b). 1H

NMR (CDCl3, 400 MHz): 1.95, 1.97, 2.06, 2.16 (4s, 12 H, CH3); 3.81 (m, 1 H,

GalH-5); 3.94 (m, 2 H, GalH-6); 4.62 (d, J = 7.8, GalH-1); 5.00 (dd, 1 H, J = 3.5 and 10.5,

GalH-3); 5.08 (s, 1 H, HCCONH2); 5.30 (m, 2 H, GalH-2 and GalH-4); 5.46 and 6.50

(dependent on sample’s concentration), (2s (br), 2 H, NH2) ; 7.30–7.42 (m, 5 H, Ar). 13C

NMR (CDCl3, 100 MHz): 20.6 (CH3); 61.1 (GalC-6); 66.9, 69.3, 70.2, 70.9 (GalC-3,

GalC-2, GalC-4, GalC-5); 81.1 (CHCONH2); 100.8 (GalC-1); 127.1 (CH-Ar); 128.4

(CH-Ar); 128.8 (CH-Ar); 136.2 (C-Ar); 170.2, 172.6 (CO and CONH2). m/z

(MH + NH3) = 499. HRMS: Calcd for C22H31N2O11: [M + + NH4], 499.1927. Found:

m/z, 499.1924.

Preparation of compound 10a and 10b. The crystalline amide 9a (1.33 g, 8.8

mmol) was dissolved in dry dichloromethane (200 mL, distilled over calcium hydride).

Pyridine (1.46 mL, 18.0 mmol, dried over 4 Å molecular sieves) and trifluoroacetic

anhydride (1.27 mL, 9.0 mmol) were added. The solution was stirred under an inert

atmosphere for 20 min. If TLC monitoring showed that the conversion was not com-

pleted, another portion of pyridine and trifluoroacetic anhydride were added. The

organic solution was then poured into water, extracted with dichloromethane, washed
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with water, dried over magnesium sulfate and concentrated to dryness. The residue was

chromatographed over silica gel eluting with a 2:1 mixture of heptane and ethyl acetate,

to provide compound 10a as a hard foam (0.81 g, 63%). Using the same procedure,

starting from 0.4 g of the fraction containing amide 9b (still containing some a-

diastereoisomers), 0.3 g of compound 10b was obtained as an oil, along with small

amount of 12b.

O1-(2,3,4,6-Tetra-O-acetyl-bb-D-galactopyranosyl)-(R)-mandelonitrile (10a).
mp 130�C. 1H NMR (CDCl3, 400 MHz): 1.95, 1.97, 2.05, 2.10 (4s, 12 H, CH3);

3.85 (t, 1 H, J = 6.7, GalH-5); 4.13 (m, 2 H, GalH-6); 4.47 (d, J = 8.0, GalH-1); 4.93

(dd, 1 H, J = 3.4 and 10.0, GalH-3); 5.26 (dd, 1 H, J = 8.0 and 10.0, GalH-2); 5.35 (d,

1 H, J = 3.4, GalH-4); 5.49 (s, 1 H, CHCN); 7.43 (m, 5 H, Ar). 13C NMR (CDCl3,

100 MHz): 20.4 (CH3); 61.0, 66.6, 68.2, 68.6, 70.5, 71.1 (GalC-6, GalC-4, GalC-3,

GalC-2, GalC-5, CHCN); 99.0 (GalC-1); 116.6 (CN); 127.5 (CH-Ar); 129.1 (CH-Ar);

130.2 (CH-Ar); 132.1 (C-Ar); 169.8, 169.9, 170.0, 170.2 (CO). Anal. Calcd for

C22H25NO10 (463.44): C, 57.02; H, 5.44; N, 3.02; O, 34.52. Found: C, 57.05; H, 5.41;

N, 2.89; O, 34.41.

O1-(2,3,4,6-Tetra-O-acetyl-bb-D-galactopyranosyl)-(S)-mandelonitrile (10b).
1H NMR (CDCl3, 400 MHz): 1.97, 2.05, 2.07, 2.12 (4s, 12 H, CH3); 4.01 (t, 1 H,

J = 6.5, GalH-5); 4.17 (m, 2 H, GalH-6); 4.87 (d, J = 7.4, GalH-1); 5.07 (dd, 1 H, J = 3.4

and 10.2, GalH-3); 5.26 (dd, 1 H, J = 7.7 and 10.2, GalH-2); 5.42 (d, 1 H, J = 3.4,

GalH-4); 5.66 (s, 1 H, CHCN); 7.45 (m, 5 H, Ar). 13C NMR (CDCl3, 100 MHz): 20.45

(CH3); 61.1, 66.7, 67.9, 68.1, 70.5, 71.3 (GalC-6, GalC-4, GalC-3, GalC-2, GalC-5,

CHCN); 98.7 (GalC-1); 116.3 (CN); 127.0 (CH-Ar); 128.9 (CH-Ar); 129.9 (CH-Ar);

132.0 (C-Ar); 169.2, 169.8, 169.9, 170.2 (CO). m/z (MH + NH3) = 481. HRMS: Calcd

for C22H29N2O10: [M + + NH4], 481.1822. Found: m/z, 481.1826.

Preparation of compound 12a and 12b. Mandelonitrile 85–90% (3.8 mL,

27.1 mmol) and b-D-galactopyranose pentaacetate (3 g, 7.6 mmol) were dispersed in

dry acetonitrile (200 mL). Commercial boron trifluoride diethyl etherate (9.8 mL, 77.3

mmol) was added and the solution was stirred at 60�C for 30 min. The solution was

then cautiously poured into a solution of sodium hydrogenocarbonate (25 g, 0.3 mol).

The aqueous phase was extracted with dichloromethane, the organic layers were

washed with water, dried over magnesium sulfate, then concentrated to dryness. The

residue was chromatographed over silica gel, eluting with a mixture of heptane-ethyl

acetate 3:2. The fraction containing compounds 12a and 12b (and to a much smaller

extent isomer 10b) were recrystallized from 2-propanol, yielding pure 12a (0.92 g,

26%). The resulting filtrate was concentrated to dryness and chromatographed again

over silica gel (eluting with heptane ethyl acetate 2/1) to give 12b as a syrup (0.8 g,

still containing a small proportion of 12a).

O1-(2,3,4,6-Tetra-O-acetyl-aaa-D-galactopyranosyl)-(S)-mandelonitrile
(12a). mp 193�C. 1H NMR (CDCl3, 400 MHz): 1.95, 1.97, 2.06, 2.12 (4s, 12 H,

CH3); 4.08 (dd, 1 H, J = 6.5 and 11.8, GalH-6); 4.20 (dd, 1 H, J = 6.5 and 11.8, GalH-

6); 4.43 (t, 1 H, J = 6.5, GalH-5); 5.09 (dd, 1 H, J = 3.8 and 11.0, GalH-2); 5.29 (d, 1

H, J = 3.8, GalH-1); 5.33 (s, 1 H, CHCN); 5.37 (dd, 1 H, J = 3.3 and 11, GalH-3);
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5.51 (d, 1 H, J = 3.3, GalH-4); 7.43 (m, 5 H, Ar). 13C NMR (DMSOd6, 100 MHz):

20.39, 20.4, 20.46, 20.57 (CH3); 61.1 (GalC-6); 67.0, 67.57, 67.61, 67.7 (GalC-3,

GalC-2, GalC-4, GalC-5); 68.5 (CHCN); 96.5 (GalC-1); 116.8 (CN); 127.0 (CH-Ar);

129.2 (CH-Ar); 130.3 (CH-Ar); 132.0 (C-Ar); 169.8, 169.9, 173.1, 173.3 (CO).

Anal. Calcd for C22H25NO10 (463.44): C, 57.02; H, 5.44; N, 3.02. Found: C,

56.81; H, 5.39; N, 3.15.

O1-(2,3,4,6-Tetra-O-acetyl-aaa-D-galactopyranosyl)-(R)-mandelonitrile (12b).
1H NMR (CDCl3, 400 MHz): 1.96, 2.04, 2.11, 2.13 (4s, 12 H, CH3); 4.08 (m, 2 H,

GalH-6); 4.13 (m, 1 H, GalH-5); 5.23 (m, 2 H, GalH-3 and GalH-2); 5.42 (m, 1 H,

GalH-4); 5.45 (d, J = 3.0, GalH-1); 5.50 (s, 1 H, CHCN); 7.46 (m, 5 H, Ar). 13C NMR

(CDCl3, 100 MHz): 20.5 (CH3); 61.4 (GalC-6); 66.9; 67.0; 67.5 (GalC-2, GalC-3,

GalC-5 and GalC-4); 67.9 (CHCN); 95.1 (GalC-1); 116.4 (CN); 127.6 (CH-Ar); 129.2

(CH-Ar); 130.3 (CH-Ar); 132.0 (C-Ar); 169.8; 169.9; 170.1 (CO). m/z (MH + NH3) =

481. HRMS: Calcd for C22H29N2O10: [M + + NH4], 481.1822. Found: m/z, 481.1819.

O1-bb-D-Galactopyranosylmandelonitrile (4). Compound 10a (0.15 g, 0.3

mmol.) and sodium methanolate (0.04 g, 0.7 mmol) were stirred in dry methanol

(30 mL, dried over 3 Å molecular sieves) under an inert atmosphere for 25 min. The

solution was neutralized with Dowex 50, filtered, then concentrated to dryness to

afford compound 4 as a hygroscopic mixture of the two b-diastereoisomers in a 60–

40% proportion. 1H NMR (CD3OD, 500 MHz): 3.30 to 3.74 (m, 6 H, GalH-6, GalH-5,

GalH-4, GalH-3, GalH-2); 4.26 (d, 2/5 H, J = 7.0, GalH-1 minor); 4.52 (d, 3/5 H,

J = 7.0, GalH-1 major); 6.03 (s, 2/5 H, CHCN minor); 6.10 (s, 3/5 H, CHCN major);

7.52 (m, 3 H, CHAr major); 7.60 (m, 2 H, CHAr minor). 13C NMR (CD3OD, 125

MHz): Only small differences of signals were observed between the two diasteromers,

thus hampering full assignment on their spectra: 60.2, 60.5, 66.7, 66.9, 67.8, 68, 70.3,

70.5, 73.0, 73.3, 75.8, 76 (GalC-2, GalC-3, GalC-4, GalC-5, GalC-6 and CHCN); 101

and 102 (GalC-1), 118 and 119 (CN), 127, 129, 129.6 (CHAr), 134 (CAr). m/z

(MH + NH3) = 313. HRMS: Calcd for C14H21N2O6: [M + + NH4], 313.1399. Found: m/z,

313.1407.
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